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Abstract: Knowing the spatial distribution of individual soil taxonomic units is a key factor in 

managing efficient land use not only for agriculture but also for forestry. The use of a com-

prehensive soil surveys held in past decades and based on fieldwork created the basis for the 

initial spatial representation of the soil fund structure. However, the spatial distribution of the 

soil cover was the result of fieldwork and the experience of the person who drew this map. 

Often this led to some errors in determining the types of soils and their boundaries. To date, 

there is a growing need for precise methods of land taxation, based on correct information on 

soil cover. In countries with a large area, such as Ukraine, field surveys still do not cover the 

whole territory, often the density of the allocation of soil pits was too low, which in some cases 

led to an incorrect demarcation of soil boundaries. Since such a problem is very urgent for 

Ukraine, the search and identification of probable problem soil maps by constructing their 

predicted versions, their comprehensive analysis and cross-validation is an important task. 

The conducted investigations revealed that morphometric parameters of the relief and their 

derivatives obtaining from the analyses of DEM are a reliable basis for the predictive model-

ling of the spatial distribution of soil cover with sufficiently high accuracy, and the methodol-

ogy based on 11 types of prognostic algorithms would have a significant prospect in solving 

scientific and production problems. Very important in this process is the selection of predictors 

derived from the DEM, as well as the structure and distribution of the training dataset, based 

on which the model will be built later. Afterwards the results need to be validated, in our case, 

on the basis of the cross-validation of the models and by comparing the results with field sur-

vey. The article presents the results of 11 simulations, evaluates the quality of predictive algo-

rithms and the models obtained. Therefore, several possible ways to check the cartographic 

and simulation results of the spatial distribution of soil taxonomic units were described, as 

well as their comparison with those actually existing in nature. The most reliable method of 

the 11 presented is a direct study of the soil in the field and comparing them with the soil map. 

It is recommended to use it in case of suspicion of poorly executed maps, although financially 

it is very expensive. More preferred is a set of modelling methods that is based on the data 

already collected. With reliable sources, they provide an opportunity to predict the soil in 

places where the survey was not conducted at all. Verification of the quality of the tested mod-

els was carried out on a fragment of the Ukrainian region within the boundaries of the Cher-

nivtsi region, confined to the Prut-Dniester and Prut-Siret interfluves. 
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Introduction  

It is important to have comprehensive information on the soil cover of a specific territory 
for high-productivity agricultural production, monitoring and environmental quality manage-
ment. However, the analysis of published research shows (Jones et al. 2005) that large-scale 
soil surveys (for example, scale 1:10 000) have not been conducted for all states. 
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So, in Ukraine, about 15 of the 60 million hectares remained unchecked. At the moment, 
only agricultural land was investigated. The areas of settlements, forests, mountainous regions 
in most cases remained off the attention of researchers. The results obtained in 1957-1961 are 
outdated, there are many inappropriate results, and the correction of these data was not carried 
out over 25 years (Cherlinka 2017a). The situation in other European countries is different, but 
similar problems often occur. In Slovakia, as in one of the countries, the "Comprehensive Sur-
vey of Agricultural Areas" took place in 1961-1970. The survey was focused on agricultural 
areas only in the form of field research. The basic unit was the agricultural production entity. 
The basis of the survey was three categories of probes, with a density of 1 probe per 7-18 ha, 
a selection of 70-180 ha and a special one probe for 3-4 thousand hectares. This survey has 
become the basis for processing maps of Bonitated Soil Units (BPEJ) at a scale of 1:5 000 and 
1:10 000 including other parameters relevant to the management of agricultural land.  
The BPEJ maps included other parameters important for the management of agricultural land 
(Džatko 1974). The same nature of the soil mapping was performed in the Czech Republic as 
the two countries were in a common state. The first soil map in Poland at a scale of 1:500 000 
originated in 1907 (Miklaszewski 1907). Map of soil-agricultural units was created at a scale 
of 1:5 000 in 1956 based on a field survey. This map work was also categorized by forest 
taxons. A map was adopted in 1999 that accepted the international classification of soils.  
It was processed at a scale of 1:1 000 000 with a further refinement (Białousz et al. 2005). 
Despite detailed land surveys, detailed maps of the forest soils cover are lacking. Note that 
such problems are inherent not only for Ukraine or fora number of other developing countries, 
but also, for example, in Australia (Bui and Moran 2003).  

Manual allocation of slope steepness involved errors which propagated into delineation  
of soils of varying degrees of erosivity. This approach was used in Ukraine resulting in signif-
icant inaccuracies of spatial pattern of soil types. Filling the gaps and adjusting the boundaries 
of the soil map data in such conditions can be improved by simulation. The number of studies 
devoted to the modelling of the spiatial distribution of taxonomic soil units is increasing (Bui 
and Moran 2003; McBratney et al. 2003, Scull et al. 2003, Walter et al. 2006, MacMillan 2008, 
Browning and Duniway 2011, Caten et al. 2013, Brungard et al. 2015, Malone et al. 2016, 
Heung et al. 2016, 2017). In this case, a wide range of mathematical methods is used: from 
multivariate regression analysis, kriging, neural networks to different types of classification 
trees (Florinsky 2012). 

At the same time, in recent years attention has been increasingly paid to machine learning 
methods, such as the Classification and Regression Tree (CART) and Random Forests, while 
the proportion of classical methods such as regression kriging is decreasing (Keskin and Grun-
wald 2018). The general idea underlying the application of such methods is using the reference 
points of the landscapes with linked taxa associated with them (Lagacherie et al. 2001). Digital 
elevation model (DEM) is the main source of predictors in such a simulation as many geomor-
phometric parameters can be derived of the DEM and used as proxies of soil parameters 
(Kempen et al. 2009, Hengl et al. 2017, Marques al. 2018). The challenge in using DEMs is in 
defining relationship between quantitative measures of terrain topography and categorical var-
iables defining as the soil types. Therefore, advanced mathematical methods are needed to 
establish the relationship between all these parameters which existence can be non-obvious at 
the first glance (Giasson et al. 2008, Kempen et al. 2009, Debella-Gilo and Etzelmüller 2009, 
Hengl 2009, Cherlinka 2017a, Malone et al. 2016). 

The simulation results usually have a deviation from the real state of things, both for their 
own simulation, and for the probable errors on the soil maps, which are the inputs for calcu-
lating the input parameters. Therefore, the analysis of possible methods for verifying the re-
sults obtained is a necessary and important step for making substantiated conclusions about 
the quality of the performed soil prediction. 
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Research background  

The general simulation procedure involves allocation of a certain portion of data from the 
population under study for machine learning and the subsequent simulation will be already 
based on these data. Feng and Michie (1994) characterize this process through certain stages: 
the generation of a training sample, learning the algorithm; creation of classification rules; 
testing on a complete set of data.  

Thus, the main task of constructing a training sample for the subsequent creation of a fore-
cast soil map (or any other map with categorical data) is the choice of such points, the spatial 
arrangement of which would most fully cover the variation of taxonomic units of soils and 
their corresponding predictors. Model training on this sample allows you to establish relation-
ships between all these parameters and then transfer obtained results to the entire study area. 
Potentially, this also allows extrapolating or interpolating results beyond the existing soil 
maps, since a set of predictors is derived from a DEM that covers the entire territory.  

In constructing of training dataset Brungard et al. (2015), Heung et al. (2016), Heung et al. 
(2017) clearly distinguish between 2 approaches: (i) based on a field research of soil pits and 
(ii) a sample of clearly defined polygons from soil maps. The first approach has good pro-
spects, but requires a large established database of verified soil cuts. Large-scale mapping of 
soils requires a significant amount of such samplings, which in practice is costly.  

When choosing a training dataset different authors use diverse arsenal of techniques, from 
simple mechanistic (Steers and Hajek 1979, Wright and Wilson 1979, McKay et al. 2000, 
Campling et al. 2002, McBratney et al. 2003, Walter et al. 2006, White 2006, Giasson et al. 
2008, Hengl 2009, Caten et al. 2013, Malone et al. 2016), to theoretically substantiated 
(McBratney et al. 2003, Hengl et al. 2003). There are also different opinions about choosing 
the method for locating the points of the training sample (Walter et al. 2006).  

For example, Bui and Moran (2003) describe how to select a certain percentage of data to 
cover the area of individual habitats of each soil class by randomized learning sample – area-
weighted approach. Thus, for different map scales different percentages of area-weighted 
points were used, particularly: 15% for 1:500 000, 25% or 20% for 1:250 000; and 35% for 
1:100 000. Walter et al. (2006) defined several possible strategies for creating a sample: a 
simple randomized selection (Wright and Wilson 1979), random transects with a fixed distance 
between the points (Steers and Hajek 1979), stratified sampling to investigate the differences 
between polygons at short distances (Walter 1990), cited by (Walter et al. 2006). 

White (2006) offers one of the possible options to select educational samples based on an 
expert approach. In contrast, McKay et al. (2000) distinguishes three main ways of allocating a 
training set of data: randomized, stratified and based on the Latin hypercube. Hengl et al. (2003) 
tried to summarize all the methods and bring them the theoretical basis. In further studies, Hengl 
(2009) concluded that random selection of points has drawbacks due to variations in the quality 
of existing maps in their various parts, and since soil taxa have plane (polygonal) character, they 
suggested placing training points along the medial (median) axes of these landfills. Accord-
ingly, it was substantiated that such a method of their location more fully described soil condi-
tions, and to minimize classification errors within the boundaries of soil differentiation.  

For 12 classes of soils, Malone et al. (2016) used sample dataset based on 1000 points, of 
which 70% use to internal validation of model, and 30% reserved for external validation on the 
same sample. Then the results of “learning” are transferred to a complete set of data, that is, in 
this case, the number of points of the study sample is strictly deterministic and is an average of 
only 700/12 = 58 points per class. Similar strategies were used by Campling et al. (2002) or 
Giasson et al. (2008). McBratney et al. (2003) gave clearer guidance on the number of points in 
the training dataset (relative to the previously rasterized map): 0.0001M < х < 0.001M points 
located randomly. Caten et al. (2013) state that a set of training points less than 5% of their total 
number is not representative, and more than 20% is excessive and requires unnecessary compu-
ting time without improving the quality of the final models. 
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Hengl et al. (2018) generated a global predicted gridded soil map SoilGrids250m based on 
150,000 soil pits used for training and a stack of 158 remote sensing-based soil covariates derived 
from MODIS land products, SRTM DEM derivatives, climatic images and global landform and 
lithology maps. All of this were used to fit an ensemble of machine learning methods – random 
forest and gradient boosting and/or multinomial logistic regression (Hengl et al. 2017). 

A new method for the digital mapping of taxonomic soil units via fuzzy taxonomy and 
fuzzy clustering was proposed by Horáček et al. (2018). Fuzzified taxonomic soil information 
from 106 soil pits with 75 geomorphometric parameters (potential environmental covariates 
of soil units) derived from a 10 m LIDAR DEM was used for the input (training) data for 
territory of 104.5 km2. It was shown that in the zonal dataset the absolute match of the control 
soil pits (60) and the results of the modelling is only 26%, but the absolute mismatch is only 
10%. The remaining 64% showed a partial match. 

Thus, a number of predictive algorithms give a high (up to 100%) coincidence of forecasted 
and real classification units when using large volumes of the study sample. However, this does 
not always correspond to such accuracy in the entire volume of data. Therefore, it is useful to 
evaluate the options for constructing a training sample with the use of several perspective re-
sults of a weighted approach in predicting the best results not only on training data but also on 
real data sets. This is important given that prediction maps are interesting as the object of 
scientific study and as an important tool for obtaining information on soil cover in locations 
where no studies have been conducted yet. Therefore, the higher the degree of coincidence of 
predictive data with real maps, the more substantiated will be the conclusions on the infor-
mation localized in unsampled (i.e. white spots) of large-scale soil maps.  

Another study (Teng et al. 2018) had used dataset, containing 38 756 observations and their 
covariates for whole territory of Australia, but training and a validation was set by random 
sampling. Two-thirds were assigned to the training set and the remaining profiles were used 
for the validation. The accuracy of classification of forecasting soils obtained at these models 
does not exceed 69%, and often was much smaller.  

Note also that almost all of these authors consider the verification of the results obtained 
from the purely mathematical side. We propose a so-called cross-validation, the various vari-
ants of which will be discussed in the section «Results and discussion», which allows to com-
pare model data with real soil surveys and existing maps. This potentially allows to track errors 
not only in the model experiment, but also yet inherited in existing soil maps. For example, 
Minár (2003) showed large disparities by means direct comparing the information from exist-
ing detailed soil maps and hundreds of new soil pits in several regions of the Western Carpa-
thians. On the level of soil types, his results showed a full match for 16-18% of pits, partial 
match for 30-49%, and absolute mismatch for 34-54%. Naturally, there is a strong demand for 
high-precision soil information for a variety of purposes, for example, precision farming. 

The purpose of our work was to compare the methods of verifying the simulated data and 
give recommendations regarding the optimal combination of verification methods, the meth-
odology of creating a training set of data and the algorithm itself for constructing the model. 
At the same time, we tried to make the study process as transparent and reproducible as possi-
ble, therefore, we propose an approach involving purely open-source software. 

 

Methods and Data  

The approach of presented research comprised the following tasks: (a) vectorising raster 
maps and assigning attributes the geographic objects; (b) construction of DEM with a resolu-
tion of 5 m based on the vectorised contours; (c) geomorphometric analysis of the DEM gen-
erating relevant raster layers for soil prediction; (d) generating a training dataset according to 
the described methodological approaches; e) the establishment of a network of soil pits in field 
research; (f) simulation and generating soil models (map-versions or map-models) using  
11 basic types of predictive algorithms; (g) analysis of methods for verification of quality of 
predictive modelling and map of the soil cover.  
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The object of interest involved a part of the territory of Ukraine (Fig. 1a) within the bound-
aries of the Chernivtsi region (Fig. 1b) in the west of the state. The first polygon belongs to the 
administrative area of the city of Chernivtsi (Fig. 2a), confined to the Prut-Dniester interfluve. 
Specific problems of spatial modelling of soils from Ukrainian perspective were subject to re-
search in this area in various studies (Cherlinka and Dmytruk 2014, Cherlinka 2015, Cherlinka 
2017a). A map sheet of a topographic map M 1:2 000 is the most detailed source of topographic 
information on this area (Fig. 3a). The map was georeferenced in GIS Quantum (QGIS Devel-
opment Team 2015) using the coordinate system Pulkovo 1942 CS63 Zone X2 (Evenden and 
Warmerdam 1990), EPSG code 7826. The second test area is located in the Glybotsky district 
(Fig. 2b) of the Chernivtsi region (Prut-Siret interfluve), for which a topographic map M-35-
136-G-g-3 was selected. The map was georeferenced similarly as the first map.

a) b) 

Fig. 1. Geographical location of the research areas within Ukraine (a) and Chernivtsi region (b) 

(*for background was used SRTM data – NASA’s Shuttle Radar Topography Mission) 

a) b) 

Fig. 2. Disposition of the research polygons in Chernivtsi city (a) and Glybotsky district (b) 

(*for background was used SRTM data – NASA’s Shuttle Radar Topography Mission) 

Informative soil materials for the first area was based on the archival agro-industrial soil 
map of the research area created in 1993 (Fig. 3b). The test area was selected for comprising 
the full soil catena and entire coverage (Fig. 3c). The soil map for second area (Fig. 3d) was 
created in 1974 and it comprises a big gap (no soil data). 
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We used open-source software for data processing. Digitization and vectorising was per-
formed in Easy Trace (EasyTrace group 2015), preparation of maps of geomorphometric pa-
rameters was done in GRASS GIS (GRASS Development Team 2017) and the construction 
of a prediction model of soil cover was conducted in R which is a language and environment 
for statistical computing (R Development Core Team 2017). The DEM for both areas was 
interpolated at the spatial resolution of 5 m from contour lines using the v.surf.rst module 
based on regularized splines with tension and smoothing (Mitášová and Mitáš 1993) in 
GRASS GIS. Tuning the interpolation parameters based on Hofierka et al. (2007). The DEM 
cell size of 5 m was chosen because with a relatively high accuracy reproduction of the topog-
raphy, it also provides a practical coincidence of the areas of vectorized and rasterized soils 
(Cherlinka 2017d). This resolution also enables to express minimum area of soil being mapped 
on the map of 1:10 000 scale which is 0.3 ha corresponding to 120 pixels of 5 x 5 m which 
allows for creating a complete training dataset. This is difficult to achieve with a lower detail 
of the map, i.e. coarser resolution. Also, we used the agronomic classification of soils in 
Ukraine for which such spatial scale is required for agronomic suitability. 

a) b) 

c) d) 

Fig. 3. Topographic data of test polygon 1 (a) and location of agro-industrial soil groups/point of 
soil pits (b) along the transect on the investigated catena (c) and soils map of polygon 2 with gaps 

in soil survey (d) 

In the process of choosing predictors for the model, we used the results of McBratney et al. 
(2003) regarding the SCORPAN model. However, given the inaccessibility of many specific 
predictor data, we have focused on the most accessible, in particular, hydrological, climatic and 
morphological properties of a terrain. Hence, DEM was the basis for the allocation of a certain 
number of its characteristics, particular: altitude (dem), slope angle and slope aspect (module 
r.slope.aspect as defined by Hofierka et al. (2009)), DEM curvatures (profc, planc, longc, minic
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and maxic respectively by the module r.param.scale based on Wood (1996)), data on global 
solar radiation for day 180 at 2 p. m. (rad) (module r.sun by Hofierka and Šúri (2002)), landform 
type (gmf) by r.geomorphon (Jasiewicz and Stepinski 2013). Additional maps of hydrological 
indicators were also generated: topographic wetness index (twi) (Moore et al. 1993) in r.topidx, 
accumulation (flowaccum) and the direction of water flows (flowdirect) in r.terraflow (Arge 
et al. 2003), length of flowlines flowlength (Mitášová and Hofierka 1993) in r.flow and the 
distance to them (diststream by r.stream.distance by Jasiewicz and Metz (2011)). Cherlinka 
(2017b) analysed these predictors in detail and showed that for conditions used in the presented 
work, the minimum acceptable set of the predictors consists of the following parameters, which 
were used as basic: soil is a soil mapping unit; dem, twi, rad, slope, longc, maxic, flowaccum, 
flowlength, diststream are the above described parameters. To date, there are fuzzy c-means 
clustering analyses that show that there are more optimal ways to select predictors, which will 
be used in our future research. 

Simulation models of soil cover was performed by a script described in Cherlіnka (2017a, 
b, c). The code includes a number of adaptations for solving a set tasks and implements 14 
basic types of predictive algorithms, of which 11 were used in this study, in particular: 1) 
Multinomial Logistic Regression – MLR (Giasson et al. 2008, Kempen et al. 2009, Debella-
Gilo and Etzelmüller 2009, Hengl 2009, Cherlinka 2017a, Malone et al. 2016); 2) Neural Net-
works – NN (Venables and Ripley 2002, Ripley and Venables 2016); 3) K-Nearest Neighbors 
– KNN (Kuhn 2008, Liu 2011); 4) Random Forests – RF (Breiman 2001, Cutler et al. 2012);
5) Nonlinear Discriminant Analysis – NDA (Huberty and Olejnik 2006, Kuhn 2008); 6) Sup-
port Vector Machines – SVM (Venables and Ripley 2002, Kuhn 2008, Hastie et al. 2009); 7)
Linear Discriminant Analysis – LDA (Huberty and Olejnik 2006, Kuhn 2008); 8) Partial Least
Squares Discriminant Analysis – PLS (Kuhn 2008, Hair et al. 2010); 9) Penalized Logistic
Regression – PLR (Kuhn 2008, Hilbe 2009); 10) Nearest Shrunken Centroids – NSC (Vena-
bles and Ripley 2002, Kuhn 2008, Hastie et al. 2009); 11) Bagged Trees – BGT (Hastie et al.
2009, Peters et al. 2009, Kuhn and Johnson 2013).

The example of a lines of code in R for the different models shows the main principle 
(Tab. 1). The training dataset in all variants with map data was created by randomly-weighted 
average method on the basis of a detailed analysis (Cherlinka 2017c). In general, the modelling 
process involves the creation of a training dataset, the use of which for the "training" of pre-
dictive algorithms allows for ascertaining prognostic maps in the future. The proposed tech-
nique (Dobos and Hengl 2009), named “median” in this paper, showed good results. Therefore, 
it was used as an etalon for comparison with other methods, in particular with the median and 
randomized weighted averages (Cherlinka 2017c). The calculations revealed that in the etalon 
median training dataset the ratio of the training pixels and their percentage distribution does 
not correspond to the proportions of the areas of the soil on the original map. Therefore, based 
on this etalon median sampling, we created a median-weighted average sample, a set of pixels 
that fully corresponds to the structure of the soil areas of the original map. In this case, con-
sidering the limited amount of data from the etalon sample and the need to adhere to the exact 
proportions between the individual pixels of the soil, the size of the training dataset decreases 
with respect to the standard. Therefore, the randomized-weighted averages approach proposed 
in this article is devoid of the problem with decrease in the actual number of pixels of the 
training dataset relative to the median-weighted approach. Then it allows getting precisely 
those proportions between the training pixels and the total sample size, which is conditioned 
by the conditions of the planned experiment, for example, 5%, 10%, 15% or other needed 
proportions. The implementation of such calculations is done using the written script on Py-
thon in the GRASS GIS environment (Cherlinka 2017c). 
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Tab. 1. R code example 

Type of model R code 

MLR 
mlr.soilpredict <- multinom(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + flowlength 
+ diststream, traindata, maxit = 5000)

NN 
NN.soilpredict.train <- nnet(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + flowlength 
+ diststream, data = traindata, size = 9, decay = .1, maxit = 5000)

KNN 
KNN.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "knn", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

RF 
RF.soilpredict.train <- randomForest(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum 
+ flowlength + diststream, data = traindatastatd, ntree = 5000, mtry = 5, na.action=na.exclude)

NDA 
NDA.soilpredict.train <- mda(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, subclasses = 7, na.action=na.exclude) 

SVM 
SVM.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "svmRadial", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

LDA 
LDA.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "lda", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

PLS 
PLS.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "pls", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

PLR 
PLR.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "plr", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

NSC 
NSC.soilpredict.train <- train(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, method = "pam", metric = "Kappa", preProc = 
c("center", "scale"), na.action=na.exclude) 

BGT 
BGT.soilpredict.train <- bagging(soil ~ dem + twi + rad + slope + longc + maxic + flowaccum + 
flowlength + diststream, data = traindatastatd, nbagg = 100) 

To evaluate the quality of the model, the Cohen’s kappa index was used (Landis and Koch 
1977, Foody 2004, Li and Zhang 2007, Grinand et al. 2008, Congalton and Green 2008, Kuhn 
2008, Hengl 2009, Malone et al. 2016, Marques al. 2018), because kappa statistics is a com-
mon measure of classification accuracy. The evaluation of the statistical significance of the 
difference in accuracy between two soil maps (source and predicted) has often been based on 
the comparison of the kappa coefficient calculated for each map. In general, the kappa coeffi-
cient of agreement for a thematic map is based on the comparison of the predicted and actual 
soil class labels for each case in the model dataset and can be calculated from: 

� �
�����

����
, 

where p0 is the proportion of cases correctly allocated and pc is the proportion of agreement 
that is expected by chance. So, the derived coefficient kappa provides an estimate of the accu-
racy of the map which together with that derived from another map is the basis of most map 
comparisons. In order to maintain consistent nomenclature when describing the relative 
strength of agreement associated with kappa statistics, the following labels were proposed for 
the corresponding ranges of kappa (Landis and Koch 1977) and used in our research (Tab. 2). 

Tab. 2. Ranges of kappa 

Kappa Statistic Strength of Agreement Kappa Statistic Strength of Agreement 

<0.00 Poor 0.41-0.60 Moderate 

0.00-0.20 Slight 0.61-0.80 Substantial 

0.21-0.40 Fair 0.81-1.00 Almost Perfect 
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In order to systematically approach the analysis of possible ways of verification of real, 
cartographic and modelled data, we have developed an appropriate scheme (Fig. 4). In partic-
ular, they can be divided into three groups, depending on the type of input information: the 
existing soil map (polygon data), reliable field survey of soils (point data) and their combina-
tion. These data groups are the basis for constructing three corresponding prediction models. 

Fig. 4. Types of verification real, cartographic and modelled data 

Results and discussion 

Verification of real, cartographic and modelled data 

The analysis of paths of verification of real data, mapped data, and modelled soil data shows 
that there are several possible options for this process (Fig. 4). Note that the only type of veri-
fication that does not require simulation matches with the first version (V1) and is dedicated to 
compare the field surveys with cartographic material. The models of the first type (Modelmap), 
the second type (Modelpit) and the third type (Modelcombined) are created with the algorithms de-
scribed in the section on Methods and data and the types can be cross-verified in several ways, 
as among themselves (V9-V11), and with data sources (V2-V8). In this case, Modelcombined can 
be validated with 5 validation options (V6-V10), and for two other types of model are only 4: 
V2, V4, V9, V11 and V3, V5, V10, V11 – for Modelmap and Modelpit respectively. The need for 
one or another validation option is determined when planning an experiment depending on its 
purpose and in extreme cases all 11 methods can be involved. 

Specifically, in our case, we planned to investigate the accuracy of the existing map of 
agrogroups of soils, since there were certain doubts about its reliability, in particular the accu-
racy of soil boundaries and soil types. Thus, capabilities and options for direct and inverse ver-
ification can be traced and used for this purpose. For Ukraine, a major problem is the availability 
even at least of outdated soil maps, which, moreover, often contain significant errors. Therefore, 
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in this case, the main thing was to check the quality of the soil map according to the given soil 
pits: inverse verification by type V1. That is why the following scheme of laying the soil pits 
on the catena was planned (Fig. 3b), which provided control of the soil boundaries and the 
accuracy of the definition of the soil on map. Since the simplest and most obvious comparison 
is the comparison of the soil diagnosed in the field conditions with soil on map (V1) we have 
summarized the data in Tab. 3. The table shows qualitatively correlation of the actual investi-
gated soils with the soils depicted in the maps. Let us recall that the correspondence between 
the codes of agro-industrial groups of soils and their names is given in Tab. 4. The expected 
inaccuracies of the map quality was confirmed, because the soil map coincided with the field 
soil only in few cases (highlighted bold: soil pits 12, 13 and 16). In all other cases, we observe 
differences (sometimes quite strong) between the genetic types of real soils and the data from 
the map indicating most likely lacking expertise of map authors. Soils identified us in the field 
did not match the map data in 15 of the 18 researched cases. Given the relatively flat landscape 
and simple geomorphology, such mapping errors can be considered as blunders. In addition, 
field surveys and mapped data have only one aggregate soil group, in the area of which there 
are just three coincident soil pits. All other agrogroups do not coincide in quality and number: 
according to our research, 8 agrogroups are in real against 6 on the map.  

The presence of such gross differences indicates that further modelling based on map data 
(Modelmap) in our case makes sense only to assess the quality of predictive algorithms by cov-
ering the range of research albeit with false but complete data. Accordingly, data validation 
under Modelcombined and its corresponding variants (V6-V10) is impossible here, since such a 
model can only be constructed in the case of a complete match of field studies with mapped 
data. Another model (Modelpit) and a set of corresponding variants verification (V3, V5, V10 
and V11) can be in principle constructed, as a training dataset will use field diagnostics that is 
absolutely reliable and based on our personal observations. However, the simulation of soil 
cover for test polygon 1 cannot be accurate a priori, since the purpose of laying soil pits in our 
case is not subject to the objectives of large-scale soil mapping (which involves a completely 
different layout of soil pits) and the goal is the control of accuracy of soil boundaries and the 
allocation of soil types themselves. 

Modelling based on cartographic data 

Since the results of field studies test area 1 showed that the continuation of the work is 
possible only with Modelmap and Modelpit, we tried to get the most useful information from this 
situation. The accuracy of the models in cases of estimation of cartographic and real data, as 
noted above, is determined by means of the Cohen’s kappa index. The index determines how 
precisely the model describes the conditions for the placement of soils, and, accordingly, to 
reproduce the soil map. Consider closer the Modelmap. For the low semantic and spatial accu-
racy of the existing agrosoil map, this simulation has a purely academic interest in connection 
with the validation and ranking of a set of prediction algorithms. Obtained 11 soil cover sim-
ulations (Fig. 5) show quite interesting regularities about the quality of simulation even when 
analysing only the visual characteristics of the obtained maps. The evaluation of their numer-
ical characteristics reveals that two classifications models (Random Forest and Bagged trees) 
(Fig. 6) are the most accurate. 

The following array of simulations of soil cover is interesting in terms of its correspond-
ence to the original map and, accordingly, predictive power for areas with no information (for 
research, where relevant). Since the algorithms analyse the entire spectrum of prediction pa-
rameters, producing classification rules, then at a high level of coincidence of model and real 
data, one can speak of a certain level of statistical reliability of the results in the areas of “white 
spots”. For this reason, our conclusions in this regard are quite encouraging in the view of the 
range of values of Cohen’s κ (Fig. 6).  
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Tab. 3. Correlation between nature and map data for test polygon 1 

Sequence number of pit Agrosoil in nature Agrosoil map 

17 *29d 37d 
1, 2 *33d 35g 

7 *33d 49d 
6 37d 49d 

12, 13, 16 37d 37d 
11 *37e 37d 
5 *38e 37d 
3 *40d 45d 
4 *40d 35g 
15 *121e 178e 

8, 9, 10, 18 *209d 49d 
14 *209d 209e 

*not present on agrosoil map

Tab. 4. The correspondence of codes of agro-industrial groups of soils with their names 

Code* Name of agro-industrial groups of soils 
Available 
on area 

18a Humus podzolic and podzolic humus gleyed sandy soils 2 
18g Humus podzolic and podzolic humus surface-gleyed loamy soils 2 
24g Humus podzolic surface-gleyed weakly eroded soils 2 
25e Humus podzolic surface-gleyed medium eroded heavy loamy soils 2 
26e Humus podzolic surface-gleyed strongly eroded heavy loamy soils 2 
26l Humus podzolic surface-gleyed strongly eroded light loamy soils 2 

27ak Humus podzolic gleyed sandy loam drained rocky soils 2 
28g Humus podzolic surface-gleyed drained light loam soil 2 
29d Light gray and gray podzoliс soils 1 
33d Light gray and gray podzoliс gleyed soils 1 
35g Light gray and gray podzoliс surface-gleyed soils 1, 2 
37d Light gray and gray podzoliс weakly eroded soils 1 
37e Light gray and gray podzoliс weakly eroded soils 1 
38e Light gray and gray podzoliс medium eroded soils 1 
40d Dark gray podzolic and weakly regressed soils 1 
41d Podzolic chernozem and weakly regressed and dark gray strongly regressed medium loam soils 2 
45d Dark gray podzolic and podzolic chernozem gleyed  1, 2 
45g Dark gray podzolic and podzolic chernozem gleyed light loam soils 2 
49d Dark gray podzolic, podzolic chernozem and regressed weakly eroded soils 1, 2 

50e 
Dark gray podzolic and regraded soils and podzolic chernozems, and regraded medium 
eroded heavy loamy soils 

2 

87e Chernozem unsalonized and slightly salonized on dense clay strongly eroded heavy loamy soils 2 
121e Meadow-chernozem soils and their slightly saline and slightly solodized varieties 1 

133e 
Meadow, chernozem-meadow soils and their slightly saline and slightly solodized varieties  
heavy loamy soils 

2 

141d Meadow marsh, swamp and muddy marsh non-dried medium-sandy soils 2 
142l Meadow marsh, swamp and muddy marsh dried light clay soils 2 
175b Humus non-deep gleyed clay-(bind)-sandy soils 2 
175g Humus non-deep gleyed light loam soil 2 
175v Humus non-deep gleyed sandy soils 2 
177e Humus non-deep gleyed heavy loamy soils 2 
178e Sward deep gley soils and their podzolic variants 1 
209d Alluvion chernozems and meadow chernozem soils 1 
209e Alluvion chernozems and meadow chernozem soils 1 
215e Eroded soil and the outputs loose (sand and loess) heavy loam soil species 2 
216l Eroded soil and the outputs quaternary clay light clay soil 2 

219ak Modern riverbed sediments and sandy rocky soil 2 

*a – sandy; b – clay-sandy; d – medium loam; e – heavy loam; g – light loam; k – stony; l – heavy clay
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Fig. 5. Results of mathematical modelling of soil cover of first test area. Signatures are 
grouped together in pairs of patterns on the basis Modelmap (left) and Modelpit (right).  

The soil codes are explained in Table 2  

Fig. 6. The distribution of the value of the index κ depends on the type of simulation model 

Based on the rank of the models in order to increase the quality of the prediction by κ of the 
main data set, the PLR algorithm was the worst result among others. Following in ascending 
order placed PLS, NSS, LDA, NDA, MLR, NN, SVM, KNN, RF and BGT. The last two algo-
rithms (RF, BGT) belong to the classifications type, and their high results indicate the greatest 
suitability of this kind of approaches in mapping the soil cover on the basis of the cartographic 
sampled dataset. It should be noted that a number of algorithms have crossed the prediction qual-
ity limit of 90% (MLR, NN, SVM, KNN, RF and BGT), of which the last two (RF and BGT) 
practically reproduce the original soil map (Fig. 5). This confirms the previous research in Cher-
linka (2017c) who demonstrated that a randomized-weighted sample of learning dataset is opti-
mal for problems of reproduction (re-creation) and simulation of soil cover maps. This is true 
if we use only cartographic data as input. In other cases, as Horáček M. et al. (2018) show, other 
approaches may be successful. 
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The obtained results showed the kappa index of most of our map data based models exceeds 
the averaged values reported in other similar studies. For example, Hengl (2009) considered 
51-67% a good level of modelling quality. Grinand et al. (2008) obtained κ = 67-87% for the
training dataset and about 30% – for the main dataset. For small-scale soil maps Giasson et al.
(2008) received the following values κ 37-54%. Malone et al. (2016) reported 35-40% of the
kappa index. According to the ranges given Landis and Koch (1977), the PLR model reached
the worst kappa – a slight strength of agreement (κ = 0.01-0.20), PLS, NSС – substantial
strength (κ = 0.61-0.80), and at the best ones (LDA, NDA, MLR, NN, SVM, KNN, RF and
BGT) – almost perfect strength of agreement (κ = 0.81-0.99). Accordingly, the evaluation of
the quality of maps based on simulation can follow being above the levels reported in the above
mentioned literature. In addition, we believe that there is still some potential for increasing the
total value of κ, in particular through a more thorough selection of predictors of the model. For
example, fuzzy c-means clustering analyses for selecting predictors as shown Horáček et al.
(2018) and the expansion of their number by incorporating remote sensing data, anthropogenic
deposits map and more.

A significant beneficial effect of this kind of modelling is the ability to fill gaps on existing 
cartographic materials with data from prediction map-versions and, thus, obtaining maps of con-
tinuous soil cover. It does not detract from the value of the conclusions on the ranking of predic-
tive algorithms and the choice of how to obtain a training dataset. In the case of analysing correct 
cartographic materials with gaps in the soil data, proposed approach allows to obtain statistically 
reliability data. In the absence of field surveys in certain areas, these data can be used to solve 
applied problems of soil science, agronomy, land management, cadastre etc.  

To check the previous conclusion, we conducted simulations for a test site 2 that is charac-
terized by large gaps in cartographic soil information and conducted additional field survey of 
soils. The obtained forecast soil map using the algorithm of Random Forests has a kappa index 
equal 0.867, which means 86.7% of the coincidence of predicted and mapped soils (Fig. 7).  

Fig. 7. Predicted map of soils of the test site 2 using the Random Forest algorithm. Red dots 

are the locations of the soil pits 
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To reaffirm assume that in the gaps on the map, this forecast has a similar reliability, we 
laid a series of soils pit that allowed a direct verification according to option V4. Results are 
encouraging, since 5 out of 6 soil pits coincided with the simulated soil meaning that the reli-
ability is high. The high coincidence of the real and simulated soils indirectly testifies to the 
high quality of the soil map of the second test area, although it was created 44 years ago. 

Note that the average simulation time using script R for test area 1 was about 52 minutes 
and approximately 3 hours for research area 2 on a test platform with an operating system 
Debian GNU/Linux 9 (Stretch with the kernel 4.9.0-3-amd64 x86_64) and a processor Intel 
Core І7-5700HQ CPU@3.50GHz (16 Gb RAM). Such computing time expenditures are small 
and allow you to analyse and simulate, if necessary, much larger areas than in this study. 

Modelling based on soil pits data 

Equally interesting is the detailed analysis Modelpit. As it was already mentioned, the structure 
of the source data, in this case, was not designed for the purpose of large-scale soil mapping, but 
for the verification of soil boundaries and the accuracy of the definition of soil types on a map. 
This fact imposed certain limitations on the quality of the expected results, since the points of 
laying soil pits are not typical points of the area (the “keys” in the terminology of soil mapping). 

The use of 11 prediction algorithms allowed obtaining a series of forecast maps (Fig. 5), 
which generally allow for a conclusion that only 18 soil pits with extremely non-optimal allo-
cation are insufficient to simulate the soil cover for such a territory. Hence, on average, one 
soil pit spatially supports 9.28 ha, which is insignificant for this category of complexity of the 
landscape. The high values of Cohen’s κ (Fig. 6) should not be misleading: 6 algorithms out 
of 11 showed that there are 100 % matches of training and complete data. In fact, this only 
happened because the sampling itself consists of only 18 pits, and in such a small amount of 
data this coincidence is not indicative. Of course, even with such data, we can make certain 
conclusions about the quality of the algorithms. Steadily high as in the previous model, 100% 
of kappa was reached by RF and BGT. A 100% match for the MLR, NN, NDA, and LDA 
algorithms was achieved. Relatively high kappa parameters are in PLS and NSC, declined 
slightly in SVM, and in PLR and KNN, they dropped sharply. 

Visual inspection of the resulting simulations provides a more interesting aspect. Given 
certain experience from previous soil studies, only RF and BGT are the most similar to real 
from the maps obtained by modelling based on field data. Obviously, cross-validation by 
means the kappa (in cases where it is 100%) will be formally valid, but we would be careful 
to recommend such predictive maps for use.  

It has been established that in order to cover all possible cross-validation options for a field 
survey-based, map-based and purely model data, certain conditions need to be met. In partic-
ular, these are the following conditions: 1) the number of planned soil pit should meet the 
objectives of large-scale soil survey; 2) the scheme of their location should correspond to the 
key points of the studied area, which are allocated on the basis of geomorphological analysis. 
This enables to get the most reliable and correct results. The use of soil maps as a source of 
information to fill the gaps in research with predictive data is possible only with the high qual-
ity of these maps, otherwise the maps errors will be present in the prediction models. 

Conclusions 

The presented results demonstrated that there are 11 possible ways of verifying real, mapped 
and modelled soils, which can be divided into three groups depending on the type of input infor-
mation: polygon data (soil maps), point data (reliable field survey of soils) and their combination. 
This data grouping provides possibilities for constructing the corresponding three sets of predic-
tion models that include 11 types of basic predictive algorithms. Despite the relative simplicity 
of our scheme of cross-validation variants, it allows us to fully appreciate the quality of the work 
performed. This concerns soil surveys in field conditions, existing map data and modelling itself. 
Depending on the purpose, you can choose a specific set of cross-validation combinations.  
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An analysis of the soil cover simulations from the point of view of their correspondence to 
the original soil map, permit us suggests some algorithms for the creation of prediction maps 
that will be contained forecast soil in areas with missing information with the results of a cer-
tain level of statistical reliability. The performance of the output soil models based on the 
Cohen’s κ can be ordered from the lowest to the highest kappa as follows: PLR, PLS, NSS, 
LDA, NDA, MLR, NN, SVM, KNN, RF and BGT. The high results of the last two algorithms 
indicate that they are most suitable for soil prediction based on the cartographic training da-
taset. Randomized-weighted sample of training data was found to be optimal for improving 
reproduction and modelling of soil cover maps. 

It is shown that in modelling the soil cover the location points of field observations should 
be optimal and correspond to the method of such surveys in order to obtain cartographic results 
that are acceptable in soil science. Such a conclusion can be made, despite the formally high 
values of Cohen’s κ. This was expected, and due, in the first place, to the orientation of the 
scheme of pits for verifying the existing agro-industrial soil map.  

These results clearly outline the scope and technical characteristics of future research: 
1) the number of soil pits should correspond to the plan of large-scale soil survey; 2) the scheme
of soil pits allocations should correspond to the key points of the area set on the basis DEM and
detailed geomorphological analysis; 3) the use of soil maps as a source of information to fill the
gaps in research with predictive data is possible only with the high quality of these maps, other-
wise the maps errors will be present in the models. Only in such a case, it is advisable to apply
the full range of possible cross-validations of field, cartographic and model data and obtaining
the most reliable and correct results from the mathematical and soil science side.
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